How to order Contact us Distributors Reviews
Register / Login

Select currency

If you'd like to view estimated pricing in other currencies then please select a currency below below.

GBP USD EUR JPY AUD NOK CHF NZD CAD

Please note:

  • Currency conversions are estimates and for information only
  • Your order will be billed in GBP
  • All prices exclude VAT / other local sales taxes
  • Shipping calculated during checkout


Step-Down Voltage Regulator D36V28Fx – 3.3V 3.6A

by Pololu
An image of Step-Down Voltage Regulator D36V28Fx An image of Step-Down Voltage Regulator D36V28Fx An image of Step-Down Voltage Regulator D36V28Fx An image of Step-Down Voltage Regulator D36V28Fx An image of Step-Down Voltage Regulator D36V28Fx An image of Step-Down Voltage Regulator D36V28Fx An image of Step-Down Voltage Regulator D36V28Fx An image of Step-Down Voltage Regulator D36V28Fx An image of Step-Down Voltage Regulator D36V28Fx An image of Step-Down Voltage Regulator D36V28Fx An image of Step-Down Voltage Regulator D36V28Fx

The D36V28Fx family of buck (step-down) voltage regulators generates lower output voltages from input voltages as high as 50 V.

They are switching regulators (also called switched-mode power supplies (SMPS) or DC-to-DC converters), which makes them much more efficient than linear voltage regulators, especially when the difference between the input and output voltage is large. These regulators can typically support continuous output currents between 2 A and 4 A, depending on the input voltage and output voltage (see the Maximum continuous output current section below). In general, the available output current is a little higher for the lower-voltage versions than it is for the higher-voltage versions, and it decreases as the input voltage increases.

The regulators have reverse voltage protection up to 40 V, output undervoltage and overvoltage protection, over-current protection, and short-circuit protection. A thermal shutdown feature also helps prevent damage from overheating and a soft-start feature limits the inrush current and gradually ramps the output voltage on startup.

Features

D36V28F3 D36V28F5 D36V28F9
Input Voltage 4.5 V to 50 V 5.3 V to 50 V 9.8 V to 50 V
Output Voltage 3.3 V 5 V 9 V
Accuracy 4% 4% 4%
Typical maximum continuous output current 3.2 A to 4.5 A 2.5 A to 4 A 2.3 A to 3.4 A
Typical efficiency 80% to 90% 80% to 90% 85% to 95%
Typical no-load quiescent current 2 mA to 3 mA 2 mA to 3 mA 1 mA to 3 mA
  • Switching frequency: ~500 kHz under heavy loads
  • Power-save mode with ultrasonic operation that increases light load efficiency by reducing switching frequency, but keeps it above the audible range (20 kHz)
  • Enable input with precise cutoff threshold for disconnecting the load and putting the regulator into a low-power state that draws approximately 10 µA to 20 µA per volt on VIN
  • “Power good” output indicates when the regulator cannot adequately maintain the output voltage
  • Output undervoltage and overvoltage protection
  • Soft-start feature limits inrush current and gradually ramps output voltage
  • Integrated reverse-voltage protection up to 40 V, over-current and short-circuit protection, over-temperature shutoff
  • Compact size: 0.7″ × 0.8″ × 0.345″ (17.8 mm × 20.3 mm × 8.8 mm)
  • Two 0.086″ mounting holes for #2 or M2 screws

Connections

This regulator has six connections: power good (PG), enable (EN), input voltage (VIN), output voltage (VOUT), and two ground (GND) connections.

The “power good” indicator, PG, is an open-drain output that goes low when the regulator’s output voltage either rises more than 20% above or falls more than 10% below the nominal voltage (with hysteresis). An external pull-up resistor is required to use this pin.

The regulator, which is enabled by default, can be put into a low-power sleep state by reducing the voltage on the EN pin below 1.2 V, and it can be brought out of this state again by increasing the voltage on EN past 1.35 V. The quiescent current draw in this sleep mode is dominated by the current in the 100 kΩ pull-up resistor from ENABLE to VIN and in the reverse-voltage protection circuit, which altogether will be between 10 µA and 20 µA per volt on VIN. The tight tolerance of the enable input allows a precise low-VIN cutoff to be set, such as with the output of an external voltage divider powered by VIN, which is useful for battery powered applications where draining the battery below a particular voltage threshold could permanently damage it.

The input voltage, VIN, powers the regulator. Voltages between 4.5 V and 50 V can be applied to VIN, but generally the effective lower limit of VIN is VOUT plus the regulator’s dropout voltage, which varies approximately linearly with the load (see below for graphs of the dropout voltage as a function of the load).

VOUT is the regulated output voltage.

The six connections are arranged on a 0.1″ grid for compatibility with solderless breadboards, connectors, and other prototyping arrangements that use a 0.1″ grid. The PG connection is the only one not located along the edge of the board. A 6×1 straight male header strip and a 5×1 right-angle male header strip are included with the regulator; one pin of the straight header can optionally be broken off and soldered into PG.

Typical efficiency

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns.

Maximum continuous output current

The maximum achievable output current of these regulators varies with the input voltage but also depends on other factors, including the ambient temperature, air flow, and heat sinking. The graph below shows maximum output currents that these regulators can deliver continuously at room temperature in still air and without additional heat sinking.

During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.

Quiescent current

The quiescent current is the current the regulator uses just to power itself, and the graph below shows this for the different regulator versions as a function of the input voltage. The module’s EN input can be driven low to put the board into a low-power state where it typically draws between 10 µA and 20 µA per volt on VIN.

Typical dropout voltage

The dropout voltage of a step-down regulator is the minimum amount by which the input voltage must exceed the regulator’s target output voltage in order to ensure the target output can be achieved. For example, if a 5 V regulator has a 1 V dropout voltage, the input must be at least 6 V to ensure the output is the full 5 V. Generally speaking, the dropout voltage increases as the output current increases. The graph below shows the dropout voltages for the different members of this regulator family:

Useful Resources

  • Dimension diagram of the Step-Down Voltage Regulator D36V28Fx
  • 3D model of the Step-Down Voltage Regulator D36V28Fx
  • Drill guide for the Step-Down Voltage Regulator D36V28Fx

Reviews

User photos

The D36V28Fx family of buck (step-down) voltage regulators generates lower output voltages from input voltages as high as 50 V.

POL-3781

Product options

  • 3.3V 3.6A Out of stock
  • 5V 3.2A Out of stock
  • 9V 2.6A Out of stock

You must register for an account and be logged in to view pricing or place an order on the Pimoroni Wholesale store.

If you represent a school or university, a business, or reseller of Maker products then you can sign up for a wholesale account.

If you already have an account you can login to your account here.

Alternatively the easiest way to get your hands on the products we offer is to order them directly from our customer facing online store.

SKU
POL-3781
EAN
0769894019504
Brand
Pololu
Stock available
0 units
Backorder not allowed on this product
Weight
6g
Size
3.3V 3.6A

Video introduction

Guides & tutorials

Search

 

Region

Your search returned no results.

Subscribe

We'll keep you up to date with new product launches!

The good ship

We've been sailing the Maker seas offering our wares since 2012.

  • read about our history
  • what our customers say
  • find a local distributor
  • contact our business team

We manufacture all of our products locally at our workshop in Sheffield, UK

Under one roof

Pimoroni are your one-stop shop for bulk and education purchasing of Raspberry Pi, Pimoroni, micro:bit, Adafruit, Sparkfun, and many other brands.

If you have any questions about what we offer then drop us a line.

Pimoroni Ltd

Unit 1, Parkway Business Park,
Parkway Drive,
Sheffield,
S9 4WN,
United Kingdom

Registered in England and Wales:
Company №: 07510759
VAT Reg №: GB 140 8707 21