How to order Contact us Distributors Reviews
Register / Login

Select currency

If you'd like to view estimated pricing in other currencies then please select a currency below below.

GBP USD EUR JPY AUD NOK CHF NZD CAD

Please note:

  • Currency conversions are estimates and for information only
  • Your order will be billed in GBP
  • All prices exclude VAT / other local sales taxes
  • Shipping calculated during checkout


Pololu 3.3V Step-Up/Step-Down Voltage Regulator S7V8F3

by Pololu
An image of Pololu 3.3V Step-Up/Step-Down Voltage Regulator S7V8F3 An image of Pololu 3.3V Step-Up/Step-Down Voltage Regulator S7V8F3 An image of Pololu 3.3V Step-Up/Step-Down Voltage Regulator S7V8F3 An image of Pololu 3.3V Step-Up/Step-Down Voltage Regulator S7V8F3 An image of Pololu 3.3V Step-Up/Step-Down Voltage Regulator S7V8F3

The S7V8F3 switching step-up/step-down regulator efficiently produces a fixed 3.3 V output from input voltages between 2.7 V and 11.8 V.

Its ability to convert both higher and lower input voltages makes it useful for applications where the power supply voltage can vary greatly, as with batteries that start above but discharge below the regulated voltage. The compact (0.45″ × 0.65″) module has a typical efficiency of over 90% and can deliver 500 mA to 1 A across most of the input voltage range.

The Pololu step-up/step-down voltage regulator S7V8F3 is a switching regulator (also called a switched-mode power supply (SMPS) or DC-to-DC converter) that uses a buck-boost topology. It takes an input voltage from 2.7 V to 11.8 V and increases or decreases the voltage to a fixed 3.3 V output with a typical efficiency of over 90%. The input voltage can be higher than, lower than, or equal to the set output voltage, and the voltage is regulated to achieve a steady 3.3 V.

This flexibility in input voltage is especially well-suited for battery-powered applications in which the battery voltage begins above the desired output voltage and drops below the target as the battery discharges. Without the typical restriction on the battery voltage staying above the required voltage throughout its life, new battery packs and form factors can be considered. For example:

  • A 3-cell battery holder, which might have a 4.5 V output with fresh alkalines or a 3.0 V output with partially discharged NiMH cells, can be used with this regulator to power a 3.3 V circuit.
  • A single lithium-polymer cell can run a 3.3 V device through its whole discharge cycle.

In typical applications, this regulator can deliver up to 1 A continuous when the input voltage is higher than 3.3 V (stepping down). When the input voltage is lower than 3.3 V (stepping up), the available current decreases as the difference between the voltages increases; please see the graphs at the bottom of this page for a more detailed characterization. The regulator has short-circuit protection, and thermal shutdown prevents damage from overheating; the board does not have reverse-voltage protection.

This regulator is also available with a fixed 5 V output

Features

  • input voltage: 2.7 V to 11.8 V
  • fixed 3.3 V output with +5/-3% accuracy
  • typical continuous output current: 500 mA to 1 A across most combinations of input and output voltages (Actual continuous output current depends on input and output voltages. See Typical Efficiency and Output Current section below for details.)
  • power-saving feature maintains high efficiency at low currents (quiescent current is less than 0.1 mA)
  • integrated over-temperature and short-circuit protection
  • small size: 0.45″ × 0.65″ × 0.1″ (11 × 17 × 3 mm)

Using the Regulator

During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.

Connections

The step-up/step-down regulator has four connections: shutdown (SHDN), input voltage (VIN), ground (GND), and output voltage (VOUT).

The SHDN pin can be driven low (under 0.4 V) to power down the regulator and put it in a low-power state. The quiescent current in this sleep mode is dominated by the current in the 100k pull-up resistor from SHDN to VIN. With SHDN held low, this resistor will draw 10 µA per volt on VIN (for example, the sleep current with a 5 V input will be 50 µA). The SHDN pin can be driven high (above 1.2 V) to enable the board, or it can be connected to VIN or left disconnected if you want to leave the board permanently enabled.

The input voltage, VIN, should be between 2.7 V and 11.8 V. Lower inputs can shut down the voltage regulator; higher inputs can destroy the regulator, so you should ensure that noise on your input is not excessive, and you should be wary of destructive LC spikes (see below for more information).

The output voltage, VOUT, is fixed at 3.3 V. The output voltage can be up to 3% higher than normal when there is little or no load on the regulator. The output voltage can also drop depending on the current draw, especially when the regulator is boosting from a lower voltage (stepping up), although it should remain within 5% of the set output.

The four connections are labeled on the back side of the PCB, and they are arranged with a 0.1″ spacing along the edge of the board for compatibility with standard solderless breadboards and perfboards and connectors that use a 0.1″ grid. You can solder wires directly to the board or solder in either the 4×1 straight male header strip or the 4×1 right-angle male header strip that is included.

Typical Efficiency and Output Current

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns. As shown in the graph below, this switching regulator has an efficiency between 80% to 95% for most applications. A power-saving feature maintains these high efficiencies even when the regulator current is very low.

The maximum achievable output current of the board varies with the input voltage but also depends on other factors, including the ambient temperature, air flow, and heat sinking. The graph below shows output currents at which this voltage regulator’s over-temperature protection typically kicks in after a few seconds. These currents represent the limit of the regulator’s capability and cannot be sustained for long periods, so the continuous currents that the regulator can provide are typically several hundred milliamps lower, and we recommend trying to draw no more than about 1 A from this regulator throughout its input voltage range.

LC Voltage Spikes

When connecting voltage to electronic circuits, the initial rush of current can cause voltage spikes that are much higher than the input voltage. If these spikes exceed the regulator’s maximum voltage, the regulator can be destroyed. If you are connecting more than about 9 V, using power leads more than a few inches long, or using a power supply with high inductance, we recommend soldering a 33 μF or larger electrolytic capacitor close to the regulator between VIN and GND. The capacitor should be rated for at least 16 V.

More information about LC spikes can be found in the application note, Understanding Destructive LC Voltage Spikes.

Useful Resources

  • Pololu Step-Up/Step-Down Voltage Regulator S7V8x schematic diagram
  • Dimension diagram of the S7V8x Step-Up/Step-Down Voltage Regulator
  • 3D model of the Pololu Step-Up/Step-Down Voltage Regulator S7V8Fx
  • Pololu Step-Up/Step-Down Voltage Regulator S7V8x drill guide
  • Texas Instruments TPS63060/TPS63061 regulator datasheet

Reviews

User photos

The S7V8F3 switching step-up/step-down regulator efficiently produces a fixed 3.3 V output from input voltages between 2.7 V and 11.8 V.

POL-2122

You must register for an account and be logged in to view pricing or place an order on the Pimoroni Wholesale store.

If you represent a school or university, a business, or reseller of Maker products then you can sign up for a wholesale account.

If you already have an account you can login to your account here.

Alternatively the easiest way to get your hands on the products we offer is to order them directly from our customer facing online store.

SKU
POL-2122
EAN
0769894019559
Brand
Pololu
Stock available
0 units
Backorder not allowed on this product
Weight
3g

Video introduction

Guides & tutorials

Search

 

Region

Your search returned no results.

Subscribe

We'll keep you up to date with new product launches!

The good ship

We've been sailing the Maker seas offering our wares since 2012.

  • read about our history
  • what our customers say
  • find a local distributor
  • contact our business team

We manufacture all of our products locally at our workshop in Sheffield, UK

Under one roof

Pimoroni are your one-stop shop for bulk and education purchasing of Raspberry Pi, Pimoroni, micro:bit, Adafruit, Sparkfun, and many other brands.

If you have any questions about what we offer then drop us a line.

Pimoroni Ltd

Unit 1, Parkway Business Park,
Parkway Drive,
Sheffield,
S9 4WN,
United Kingdom

Registered in England and Wales:
Company №: 07510759
VAT Reg №: GB 140 8707 21